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Introduction

C++ offersall of the advantages of object-oriented programming (OOP) by allowing the devel oper to create user-defined data
types for modeling real world situations. However, the real power within C++ is contained in its features. Four main topics
will be covered in this document:

Overloaded operators

Templates

Exception handling

Namespaces

There will also be an introduction to the Standard Template Library.

An example C++ application was devel oped to demonstrate the content described in this document and the I ntroduction to
C++ document. The application encapsul ates sports data such as team name, wins, losses, etc. The source code can be
obtained fromhtt p: //www. tcf-nj.org/ orhttp://ww.redlich.net/tcf/.

Overloaded Operators

Operator overloading allows the devel oper to define basic operations (suchas +,-, ,/) for objects of user-defined data
types asif they were built-in datatypes. For example, consider a simple string class:

class string

{

private:
char *str;

public:
string(char const *s)

{

str = new char[strlen(s) + 1];
strcpy(str,s);

}

~string(void)
{

delete[] str;

char *getStr(void) const

{

return str;

}
b

Two string objects are created within an application that uses the simple string class:

string s1("Hello, world!");
string s2("Hello, out there!");



These objects are tested for equality using the C library functionst r cnp() andtheget St r () function defined in the
string class:

if(strcnp(sl.getStr(),s2.getStr()) == 0)
/1 do this

el se
/1 do that

The conditional expressioni f (strcnp(sl.getStr(),s2.getStr()) == 0) isabitlengthy and not as easy to
read at first glance. However, writing an overloaded equality operator (oper at or ==) defined as:

bool operator==(string const &str)

{
return(strcnp(getStr(),str.getStr()) == 0);

}

for the string class allows for acomparison of the two string objects asif the string objects were built-in data types using the
normal equality operator (==):

if(sl == s2)
// do this
el se
/1 do that

Thisis obviously much easier to read. The compiler interpretsthe statements1l == s2 as:
sl. operator==(s2)

s1 istheobject in control ands2 isthe argument passed into the overloaded equality operator. Because of the simplified

syntax when working with user-defined types, overloaded operators are essentially considered “ syntactic sugar.” They are
very attractive, but can be dangerous, as described in the next section.

Deep vs. Shallow Copy

The compiler automatically generates certain constructors and overloaded operatorsif they are not explicitly defined in a
user-defined type. In general, the compiler automatically creates:

A default constructor.

A destructor

An assignment operator (oper at or =)

The compiler-generated assignment operator has the function signature:

T &T::operator=(T const &);
where T isadatatype. For the string class above, the compiler will generate an assignment operator that might ook like:

string &string::operator=(string const &s)
{
str = s.str;
return *this;

}



This function performs memberwise assignments. However, sincest r isof typechar *, the menory for the character

string must be released and reallocated. The compilergenerated assignment operator does not address the required memory
handling and thus provides ashallow copy. Whens1 and s2 were constructed, the pointers to their respective character
string assignments were represented as.

sl.str w—— "Hello, world!"

"Hello, out
there!"

s2.str

With the shallow copy assignment operator, an assignment of s2 = s1 would yield:

sl.str -— "Hello, world!"
"Hello, out
s2.str therel”

causing a memory leak.

A deep copy addresses the required memory handling. A user-defined assignment operator for the string class should |ook
like:

string &string::operator=(string const &s)
{
delete[] str;
str = new char[strlen(s) + 1];
strcpy(str,s);
return *this;

}

Now an assignment of s2 = s1 would yield:

sl.str w——= "Hello, world!"

s2.str

"Hello, world!"

correctly copying the string froms1 tos2.

Operators That Can Be Overloaded
There are avariety of operatorsthat can be overloaded. The table below contains the complete list:

+ - * / % N & | ~ !

= < > += - = * = /| = U= N= &=

| = << >> >>= <<= == I = <= >= &&
I ++ - - , - >* -> @) [1] new del ete

Operators That Cannot Be Overloaded
The following short list of operatorscannot be overloaded:

[ .~ ] 0 ] 2 |

These operators already have predefined meaning with regard to class objects. However, the standards committee has
considered the possibility of overloading the conditional operator (?: ).



Limitations

There are several restrictions for operator overloading:
The meaning of an operator asit is applied to a built-in type cannot be changed.
The number of operands for an operator asit is applied to abuilt -in type cannot be changed.
Operator precedence and associativity cannot be changed.
Personal operators cannot be defined.

Templates

One benefit of generic programming isthat it eliminates code redundancy. Consider the following function:

void swap(int & irst,int &second)

{

int tenmp = second;
second = first;
first = tenp;

}

Thisfunction is sufficient for swapping elements of typei nt . If itisnecessary to swap two floating-point values, the same
function must be rewritten using typef | oat for every instance of typei nt :

void swap(float &first,float &second)
{
float tenp = second;
second = first;
first = tenp;
}

The basic algorithm isthe same. The only difference is the data type of the elements being swapped. Additional functions

must be written in the same manner to swap elements of any other datatype. Thisis, of course, very inefficient. The
template mechanism in C++ was designed for generic programming.

There are two kinds of templates:
Function templates
Classtemplates

Astheir namesimply class templates are applied to an entire class, and function templates are applied to individual functions.

To create afunction or class template, the declaration and definition of that function or class must be preceded with the
Statement:

tenpl ate <class T>

where<cl ass T> isthetemplate parameter list. More than one parameter, separated by commas, may be specified. The
Tin<cl ass T> canbeany variable name; it just so happensthat T is most commonly used. Also, thekeywordcl ass in
<cl ass T>impliesthat T must be of classtype, however T can be any datatype, built-in or user-defined. Defining a
function template to swap elements of any datatype will eliminate the multiple versions of swap:



tenpl ate <class T>
void swap(T & T &); // declaration

tenpl ate <class T>
void swap(T & irst, T &second) // definition

{

T tenp = second;
second = first;
first = tenp;

}

A template specializationis the specific use of the function or classfor a particular datatype. For example:

swap<i nt>(1, 2);

swap<float>(1.7,3.5);

swap<char *>("Mets",6"Jets");

swap<char>(‘a’ ,’ b’ );

are four different specializationsfor swap. The compiler generates the necessary code for each specialization.

In most cases, the compiler can deduce the data types of the arguments being passed in a function template. In the case of:

swap<i nt>(1, 2);

the compiler can deduce that arguments1 and 2 are integers. This eliminates the need to write out the data type explicitly
within angle brackets. Therefore, the above function call can be rewritten as:

swap(1, 2);

Default Arguments

A template parameter list can contain default arguments. They are defined just like default arguments in class constructors.
For example:

tenpl ate < class Key,class T,class Conpare = | ess<Key> >
class multinmap

{
=

isthe definition for the Standard Template Library container nul t i map. Thethird parameter, Conpare = | ess<Key>
specifies a default argument of | ess<Key> which is an ascending ordering of the data stored withinmul ti map.
Therefore, an instantiation of mul t i map declared as:

typedef multi map<int,string> nyMap;

assumes that | ess<i nt > isthe desired ordering of the data. If adifferent orderingisdesired, e.g.,gr eat er <i nt >, it
must be specified in the declaration:

typedef multimap< int,string,greater<int> > nmyMp;

Notice the space in betweengr eat er <i nt > and the closing angle bracket (>) at the end of the template parameter list.
Thisis significant because the compiler will interpret the double angle brackets (>>) in <i nt >> (no space) as the right shift
operator.

Default arguments in template parameter lists are very new (as opposed to default arguments for constructors) to the C++
standard. Some compilers do not support thisfeature. Therefore, if atemplate class has default parameters, the argument for
that parameter must be supplied even if that default parameter is the desired choice.



Exception Handling

Detecting and handling errors within an application has traditionally been implemented using return codes. For example, a
function may return zero on success and non-zero on failure. Thisis, of course, how most of the standard C library functions
are defined. However, detecting and handling errors this way can become cumbersome and tedious especially in larger
applications. The application's program logic can be obscured as well.

The exception handling mechanism in C++ is a more robust method for handling errors than fastidiously checking for error
codes. Itisaconvenient means for returning from deeply nested function calls when an exception is encountered. Exception
handling isimplemented with the keywordst r y,t hr ow, andcat ch. An exception israised with athrow-expression at a
point in the code where an error may occur. The throw-expression has the form:

throw T;

where T can be any datatype for which there is an exception handler defined for that type. A try-block is a section of code
containing a throw-expression or afunction containing athrow-expression. A catch clause defined immediately after the try-
block, handles exceptions. More than one catch clause can be defined. For example:

int f(void)

{

FILE *fp = fopen("filename.txt","rt");

try
{
if(fp == NULL) // file could not be opened

throw 1;

9(-1);
}

catch(int e) // catches thrown integers
{
cout << "Could not open input file" << endl;
}

catch(string const str) // catches thrown strings
{
cout << str << endl;
}

}

int g(int n)

{

if(n < 0)
throw "n is |l ess than zero";

}

The C++ library contains a defined class hierarchy for exceptions:

exception
| ogi c_error (client program errors)
domai n_error
i nval i d_ar gunent
| ength_error
out _of range
runti me_error (externa errors)
bad_al | oc (memory alocation errors)
bad_cast (dynani c_cast withreference errors)
bad_excepti on (usedwith unexpect ed() function)
bad_typei d (t ypei dwithnull errors)



whereexcept i on isthe base class. Theremaining classesinherit from except i on asindicated by the indentation.
These exceptions can be used for specific errors. The file open check in functionf () above can berewritten using the
runti me_error exception:

int f(void)
FILE *fp = fopen("filename.txt","rt");
try
{
if(fp == NULL) // file could not be opened
throw runtinme_error("Could not open input file");
9(-1);
}
catch(runtinme_error &re)
{
cout << re.what() << endl;
}
catch(string const str)
{
cout << str << endl;
}
}

The functionwhat () asshowninther e. what () statement aboveisavirtual constant member function defined in
exception. Itreturnstypechar const * whichisthenull-terminated constant character string that is stored in the
currentr unt i me_er r or object when it was constructed with thet hr ow statement.

One of the main features of exception handling is that destructors are invoked for all live objects as the stack of function calls
“unwinds” until an appropriate exception handler (i.e., catch clause) isfound.

Exceptions should be thrown for things that are truly exceptional. They should not be thrown to indicate special return
values or within copy constructors or assignment operators.

Namespaces

A namespace is primarily used to reduce potential global name conflicts that may arise when using various header filesfrom
different sources. For example, one header file namedbasebal | . h may contain:

/'l baseball.h

int strike = 0;

while another header file namedbowl i ng. h may contain:
/1 bowing.h

bool strike = fal se;



If both of these header filesare included in an application asin:

/]l sportsapp. cpp

#i ncl ude basebal | . h

#i ncl ude bowing.h // error

the compiler will generate an error because st r i ke wasalready declared inbasebal | . h.
One way of resolving this problem isto create a class in each header file. For example:

/1 baseball.h

cl ass basebal |

{ .
private:
|nt strike = 0;
publi”c;
N
/1 bowing.h
class bow ing
|{orivate:
bbbl strike = fal se;
publ i c:
.

However, classes and objects instantiated from those classes are intended to be user-defined data types that model real-world
situations. Simply storing a series of variable namesinto aclass for avoiding a name conflict makes no sense and should be
avoided.

Namespaces solve this problem. The two header files can be rewritten using namespaces:

/'l baseball.h

namespace basebal | {

|nt strike = 0;

/1 bowling.h

nanmespace bow i ng {

bool strike = fal se;

10



Both st ri kesalong with any other variables are now declared under their own namespaces namedbasebal | and
bow i ng. Outside of their namespace definitions, eachst r i ke must be referred by itsfully qualified member names.
Thisissimilar to C++ classes when referring to member names outside of a class definition. A fully qualified member name
is comprised of:

A namespace name

A scope resolution operator (: : )

A member name (variable)

Therefore, basebal | :: stri ke andbow i ng: : stri ke arethefully-qualified member names for eachstri ke.

Some noteworthy differences between namespace and class definitions include:
A semicolon after the ending curly brace is an error, however some compilers are forgiving about enforcing this syntax
rule.
Accessspecifiers(publ i ¢, prot ect ed, andpri vat e) are not allowed in namespace definitions.
Namespaces are “open,” i.e., namespace definitions do not have to be contiguous. They can bein separate parts of the
samefile or located in different files aswell. The standard namespace defined in the standard C++ library is
implemented using this technique.

Aliases

Writing the fully qualified member name for a particular variable in an application can become extremely tediousif the
variable is used numerous times. A namespace aliascan be defined to eliminate some of the additional typing. For
example:

nanmespace bb = basebal | ;

bb;:strike = 3; [/ yer out!

referstothefully qualified basebal | : : stri ke.

Using-Directives
A using-directive provides access to all members of a namespace without having to write the fully qualified member names.
It hasthe form:

usi ng namespace N,
where N is the name of a defined namespace. Therefore, stating:

usi ng nanmespace baseball;
usi ng namespace bow i ng;

will alow reference to all members of each namespace.

Using-Declarations
A using-declaration provides access toindividual members of a namespace without having to write the fully-qualified
menber names. It has the form:

using N.:m
where N is the name of a defined namespace and misthe member name. Therefore, stating:

usi ng basebal |l ::strike
using bow ing::strike

will only allow referenceto eachstri ke.

11



The C++ Standard
The C++ standard now uses header file names without the familiar . h suffix. For example, what was once written:

#i ncl ude <i ostream h>
IS now:
#i ncl ude <i ostreanp

These new headers include acommon defined namespace named st d. All C++ standard library components are declared
within this namespace. These library components will be available if the statement:

usi ng namespace std;

isincluded within an application.

The st d namespace has been added to the C library headers aswell. The format for those header filenamesis slightly
different. Along with the missing. h suffix, ac precedesthe name of the header file. So:

#i ncl ude <stdi o. h>

becomes
#i ncl ude <cstdi o>

Not all compilers support this new format for the C library headers.

Introduction to the Standard Template Library (STL)

The Standard Template Library (STL) is as subset of the entire C++ standard. Hewlett-Packard (HP) first introduced it in
1994. Alex Stepanov (now at Silicon Graphics, Inc.), Meng Lee, and David R. Musser (from Rensselaer Polytechnic
Institute) developed the STL at HP Labs.

There are three main partsto the STL.:
Containers
Iterators
Algorithms

Containers
A container isadata structure that contains a sequence of elements. There are avariety of containers availableinthe STL.

Sequential containers organize elementslinearly. The sequential containers are:
vect or —anindexed datastructure (like an array) that supports random access to the elements with efficient insertion
only at the end.
deque (pronounced “deck”) — likevect or , except efficient insertion/deletion from the beginning and the end.
| i st —adoublelinked list that supports bi-directional access to the elements.
st ri ng —adatastructure that encapsul ates and maintains character strings.

Sorted associative containers organize objects based on akey for quick retrieval of data. The sorted associative containers
are:

set —adata structure that maintains unique elements as an ordered representation.

mul ti set —likeset , except the elements do not have to be unique.

map —similar tovect or anddeque, except the elements are associated with unique key values.

mul ti map —likermap, except the key values do not have to be unique.

12



Other containersin the STL include:
st ack —adatastructure that inserts/del etes elements in alast-in, first-out (LIFO) manner.
gueue — adata structure that inserts/del etes elementsin afirst-in, first-out (FIFO) manner.

A container is primarily chosen by how well it can perform certain operations such as:
Add elementsto the container
Remove elements from the container
Rearrange elements within the container
I nspect elements within the container

The table below summarizes the complexity of these containersin Big-O notation:

Vect or deque list set /map
Insert/erase o(n) o(n) o(1) O(nlog, n)
Prepend O(n)* 0(1) 0(1) O(nlog, n)*
find(val) on)* o(n)* o(n)* O(nlog, n)
X[n] of1) of1) o(n)* o(n)*
No. of Pointers 0 1 2 3

* not directly supported by supported by member functions.

Iterators
Aniterator isageneralization of C/C++ pointers used to access elements within an ordered sequence. An ordered sequence

can be an STL container or an array of elements. Iterators are considered the “glue” that pastes together containers and
algorithmsin the STL.

To conform to the C++ standard, all of the STL containers must provide their own iterators. An iterator from a container or
sequence may be declared using either of the following statements:

class nane::iterator;
cl ass name::const _iterator;

STL containers must also provide iterators to the beginning and end of their collections. These may be accessed using the
classmembers, begi n() andend() . For example,

typedef vector<int>::iterator iterator;
vector<int> v(10);

iterator first = v.begin();

iterator last = v.end()

while(first I'=1|ast)
{
cout << *first << "\n";
++first;
}

assignsthe iterator pointing to the first element of the vector tof i r st and assigns an iterator pointing to the last element of
the vector tol ast . Thewhi | e loop accesses each element of the vector by dereferencing and incrementingf i r st .

Every iterator type guarantees that thereis an iterator value that points past the last element of a corresponding container.
Thisvalueis called the past-the-end value. No guarantee is made that this value is dereferencable.

13



There arefive types of iterators:
Input — read only access to elementsin acontainer, i.e., access stored values.
Output — write only access to elementsin a container, i.e., generate a new sequence of values.
Forward — read/write access to elements within a container, but can only move forward through the sequence.
Bi-directional — same as aforward iterator, but has the ability to move backwards through the sequence as well.
Random-A ccess — same as a bi-directional iterator, but can perform various pointer arithmetic and subscripting.

Algorithms
The STL providesgeneric algorithms for performing various operations on containers such as searching, sorting, and

transforming. Thelist of algorithmsis quite large. They can be grouped in terms of operation type or by mutating/non-
mutating function.

Thetable below isasmall sampling of the generic algorithms grouped by mutating/non-mutating function:

Non-mutating algorithms Mutating algorithms
bi nary_search - copy
count - fill
equal - generate
find - renove
max_el ement - reverse
m n_el enent - sort
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